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Abstract

Good estimates of the reliability of a system make use of test data and expert knowledge at all

available levels. Furthermore, by integrating all these information sources, one can determine how best

to allocate scarce testing resources to reduce uncertainty. Both of these goals are facilitated by modern

Bayesian computational methods and the YADAS software in particular. We apply these tools to classical

examples that were previously solvable only through the use of ingenious approximations, and use genetic

algorithms to guide resource allocation.

Key Words: Reliability Block Diagram, System-Level, Subsystem-Level and Component-Level Data,

Bayesian Methods, Genetic Algorithm, Resource Allocation, MCMC, Metropolis-Hastings Algorithm.

1 Introduction

This article is concerned with assessing the reliability of a system by combining all data and information at

whatever level they are available, whether they are at the component, subsystem or system level. Much of

the reliability literature (Cole (1975), Mastran (1976), Mastran and Singpurwalla (1978), Natvig and Eide

(1987), Martz, Waller and Fickas (1988), Martz and Waller (1990)) predates the advances made in Bayesian

computation in the 1990’s and resorts to various approximations. However, today a fully Bayesian method

using the Johnson et al. (2003) framework which combines all available multi-level level data and information

can be implemented using Markov chain Monte Carlo (MCMC).

While it is possible to use BUGS (Spiegelhalter et al. (2000)) to carry out reliability assessments, BUGS

code needs to be tailored specifically to the structure of a system (and what data and information are

available). In Section 2, we present YADAS (Yet Another Data Analysis System), a recently developed

statistical modeling environment, and show how it can easily handle such system reliability assessments. We

illustrate YADAS’s capability with reliability assessments of an air-to-air heat-seeking missile system and a

low-pressure coolant injection system first considered by Martz et al. (1988) and Martz and Waller (1990),

respectively, in Section 3.
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Figure 1: Simplified System Reliability Block Diagram.

Once multi-level data and information can be analyzed, the question arises of what additional tests

should be done when new funding becomes available. That is, what tests will reduce the system reliability

uncertainty the most? In Section 4, we show how a genetic algorithm using a pre-posterior based criterion

can address this resource allocation question. This will also be illustrated with the simplified system depicted

in Figure 1.

To combine multi-level data for system reliability assessment, we use the Johnson et al. (2003) framework.

We will introduce the framework’s notation and models by considering the reliability block diagram of a

simplified system given in Figure 1. First, components, subsystems and the system are referred to as nodes.

In this example, the system is node 0 which consists of two subsystems (nodes 1 and 2) in series. The first

subsystem consists of two components in parallel (nodes 3 and 4) and the second subsystem consists of three

components in series (nodes 5, 6 and 7).

We begin by considering the binomial data model when data are available at a node. At the ith node,

there are xi successes in ni trials with reliability πi. If node i is a subsystem or the full system (i.e., not

a component), then πi is expressed in terms of the component reliabilities. For the simplified system, the

subsystem reliabilities are expressed as π1 = 1− (1−π3)(1−π4) and π2 = π5π6π7 and the system reliability

is expressed as π0 = π1π2 = {(1 − (1 − π3)(1 − π4))π5π6π7}.

Next, we consider priors for node reliabilities. For components, we use beta priors in terms of a best

guess for reliability p̃i and a precision νi which acts like an effective sample sample. That is, if the ith

node is a component, then πi ∼ Beta(νip̃i, νi(1 − p̃i)). If no information is available, the Jeffreys’ prior

Beta(1 × 0.5, 1 × (1 − 0.5)) or a uniform prior Beta(2 × 0.5, 2 × (1 − 0.5)) can be used.

If information is available at their levels, subsystem and system priors are treated as binomial data as
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Table 1: Data for Simplified System
Node Data p̃

0 15/20 0.8
1 0.9
2 10/10 0.9
3 34/40 0.9
4 47/50 0.9
5 3/5 0.95
6 8/8 0.95
7 16/17 0.95

follows. If p̃i is the estimated reliability and its precision is νi, then the likelihood is proportional to

πνip̃i
i (1 − πi)νi(1−p̃i).

As discussed above the subsystem or system reliability πi is expressed in terms of the component reliabilities.

Note that treating this information as data differs from treating it as a prior by changing the exponents of

πi and (1 − πi) by one.

There is a variety of models that might be employed for the νi. The νi might be treated as constants

when they are really thought to be effective sample sizes. On the other hand, they might be described

by a distribution, such as νi ∼ Gamma(aν , bν). This allows expert knowledge to be downweighted if it is

inconsistent with the data or with itself. The νi may also be grouped into prior classes so that the νi within

a group are equal. Now consider the data and prior information for the simplified system given in Table 1.

Note that no precisions νi are provided so that a prior distribution needs to be specified. For illustration,

we consider the same precision ν, i.e., νi = ν, and take the prior for ν to be:

ν ∼ Gamma(aν = 5, bν = 1).

The resulting priors for the node reliabilities and ν are displayed as dotted lines in Figures 2 and 3. Combining

these priors with the node data using MCMC result in the posteriors displayed as the solid lines in Figure 2

and Figure 3. From these results, the 90% credible interval for the system (node 0) reliability is calculated

as (0.697, 0.861) whose length is 0.164. Note that even though there is no data for the first subsystem (node

1), the system data (node 0) and the component data (nodes 3 and 4), dramatically improve what we know

about the first subsystem reliability. The addition of the data does not much change ν except that ν is

somewhat larger than indicated by the prior.
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Figure 2: Plot of Simplified System Reliability Priors (flatter curves) and Posteriors (peaked curves) for

Nodes 0-7.
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Figure 3: Plot of Simplified System ν Prior (dotted line) and Posterior (solid line).
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2 YADAS: a Statistical Modeling Environment

A full Bayesian analysis of the model described above is nontrivial. The posterior distribution is not analyt-

ically tractable; although the data and expert opinion likelihood looks like

∏

i

πAi
i (1 − πi)Bi (1)

for some choices of Ai and Bi, this does not imply a beta distribution because of the functional relationships

between the πi. Consequently, an analysis requires an implementation of a Markov chain Monte Carlo

algorithm to estimate the unknown parameters (and the Gibbs sampler using exact samples from conditional

distributions is not practical either). The problem is novel enough that existing software packages such

as BUGS (Spiegelhalter et al. 2000) are not overly useful in solving it. For us, using this model was

straightforward due to the existence of the YADAS system (Graves, 2003a,b). Some of YADAS’s goals are

• saving the user from having to work out algebra before writing code,

• providing commonly used components that facilitate constructing new models,

• preventing explosion of repetitious code that is hard to debug (previous BUGS implementations of

related problems have suffered from this difficulty), and

• making it easy to make changes to a model after initial coding.

We now discuss some of the elements of the YADAS design that help it achieve these goals.

2.1 Brief discussion of YADAS architecture

YADAS is a free, open–source system distributed, along with a tutorial, examples, and supporting papers, at

yadas.lanl.gov. It is written in Java, an object–oriented language that encourages abstraction and general

solutions. The fundamental concepts of object–oriented programming are outside the scope of this paper,

but we will discuss three key abstractions of YADAS: the Parameter, the Bond, and the Update.

“Parameters” in YADAS are the quantities whose posterior distribution we are trying to estimate. They

keep track of their values as the algorithm proceeds, and each parameter knows a default method for taking

a step in the MCMC algorithm (normally variable-at-a-time Gaussian random walk Metropolis). In the

system reliability example, the key parameter is the vector of πi’s. This vector contains one element for each

component; the πi’s for the other nodes are functions of the component πi’s and are handled in other ways.

“Bonds” are the terms in the unnormalized posterior distribution (some corresponding to the prior,

others to the likelihood). These represent relationships between parameters, data, and constants. The most

common way of defining a bond is to use the “basic bond”, whose definition consists of a subset of the

parameters, a density function (e.g. Gaussian, Gamma, Binomial and so forth), and a vector of functions for

converting the parameters into arguments for the density functions. For example, the univariate Gaussian
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density function requires a vector of data points, a vector of means, and a vector of standard deviations. In

the system reliability example, a good example of a bond is the one that handles all the binomial test data

at all levels. Numbers of successes and sample sizes are data, and one also needs to calculate the success

probabilities for each node (component, subsystem, and the whole system) as functions of the component

success probabilities.

Finally, “updates” combine to define the MCMC algorithm used to estimate the posterior distribution.

The most basic kind of update is the kind that applies to each parameter and defines a variable-at-a-time,

Gaussian random walk Metropolis move. Other updates attempt to adjust multiple parameters simulta-

neously. The updates used in the system reliability problem are not too different from the simple types,

but since the parameters are probabilities that can be close to one, we perform Gaussian random walk

Metropolis-Hastings moves on the logits of the parameters.

2.2 YADAS for system reliability

Another strength of YADAS derives from its open source distribution: there are no barriers to adding

problem–specific code to facilitate analysis of particular problems. In the system reliability example, we

created a new package called ReliableSystem whose two main responsibilities were reading in the system

structure from an input file and computing the subsystem success probabilities as functions of the component

success probabilities. This has enabled us to analyze several systems using the same analysis code, and the

input file structure is simple enough to be quite easy to debug.

3 Examples

In this section we consider two substantive examples from the literature (Martz et al. (1988) and Martz and

Waller (1990)) to demonstrate the capability of YADAS.

3.1 Series Systems Example

Martz et al. (1988) considered the reliability of a certain air-to-air heat-seeking missile system consisting of

five subsystems in series each consisting of multiple components themselves combined in series as depicted

in Figure 4. The data and prior information that Martz et al. (1988) used are presented in Table 2 as

(successes/trials) and best guesses p̃ and precisions ν.

To compare with Martz et al. (1988), we treat the precisions as constants and obtain the posterior node

reliabilities using YADAS. The posterior node reliabilities are displayed in Figure 5 as solid lines; the Martz

et al. (1988) results are displayed as dotted lines. The median (0.50 quantile) and 90% credible intervals

(0.05, 0.95 quantiles) for the system and subsystem posterior reliabilities from the full Bayes and Martz et

al. (1988) methods are given in Table 3.
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Figure 4: Series System Example Reliability Block Diagram.
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Figure 5: Plot of Series System Example Reliability Posteriors (dotted from Martz et al. (1988) paper, solid

full Bayesian).
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Table 2: Data for Series System Example
Node Data p̃ ν

0 116/267 267
1 8/8
2 7/8
3 191/205 258/271 271
4 56/68 68
5

11 30/30 0.5 1
12 80/80 0.5 1
13 39/40 0.5 1
14 30/30 0.5 1
15 90/90 846/848 848
16 10/10 0.5 1
17 29/30 0.5 1
18 20/20 0.5 1
19 5/5 0.5 1
21 50/50 399/401 401
22 50/50 278/302 302
23 99/100 1098/1102 1102
24 23/25 654/689 689
25 50/50 299/301 301
26 55/55 348/352 352
31 129/130 246/250 250
32 130/130 245/250 250
33 129/130 247/250 250
34 129/130 272/276 276
35 130/130 357/360 360
36 247/250 254/257 257
37 129/130 250/252 252
38 249/250 250/252 252
39 330/330 341/352 352
41 797/802 802
42 796/802 802
43 794/802 802
44 791/802 802
45 386/402 402
51 1026/1122 1122
52 1087/1092 1092
53 1084/1092 1092
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Table 3: Comparison of Posteriors for Series System Example (0.05, 0.5, 0.95 quantiles)
Node Full Bayes Martz et al.

0 (0.393, 0.436, 0.479) (0.403, 0.463, 0.525)
1 (0.588, 0.655, 0.723) (0.701, 0.851, 0.947)
2 (0.820, 0.848, 0.873) (0.830, 0.858, 0.883)
3 (0.901, 0.917, 0.931) (0.908, 0.927, 0.944)
4 (0.886, 0.908, 0.925) (0.858, 0.898, 0.931)
5 (0.926, 0.945, 0.961) (0.889, 0.904, 0.918)

Note that there is quite a difference in the subsystem 1 results. The difference in location is due to

the fact that the approximations used in Martz et al. (1988) do not use higher–level information (system

data) to inform estimates of lower–level parameters (such as subsystem 1 reliability). The expert judgment

estimate of system reliability, 116/267 or 0.43, is lower than the data and expert judgment at the lower levels

would imply, and the full Bayesian analysis needs to attribute this unreliability to one of the subsystems.

Subsystem 1 and in particular component 19 have the sparsest information and are the natural targets. For

this reason, the full Bayesian analysis is more useful than the approach of Martz el al. (1988) in evaluating

the usefulness of gathering more data at low levels. In practice one would review the information that led

to the low system reliability estimate. The full Bayesian analysis could be rerun with random ν’s, and this

would presumably allocate positive probability to the event that p̃0 is an underestimate.

3.2 Complex Series/Parallel System Example

Martz and Waller (1990) considered the reliability of a low-pressure coolant injection system, an important

safety system in a nuclear-power boiling-water reactor. It consists of twin trains consisting of pumps, valves,

heat exchanges and piping whose reliability block diagram is displayed in Figure 6. The data and prior

information that Martz and Waller (1990) used are presented in Table 4 as (successes/trials) and best guess

p̃ and precision ν.

Like Martz and Waller (1990), we treat the precisions as constants and obtain the posterior node relia-

bilities using YADAS. The resulting posterior node reliabilities are displayed in Figure 7.

4 Resource Allocation

Once there is a way to analyze data, then test design can be addressed. When additional funding becomes

available, the questions of where should the tests be done and how many should be taken arise. In this

section, we consider the optimal allocation of additional testing within a fixed budget that results in the

least uncertainty of system reliability. We explore this by using the simplified system of Section 1. We must

determine how many tests should be performed at the system, subsystem and component level (i.e., nodes

0-7) under a fixed budget for specified costs at each level (system, subsystem, component). We use a genetic
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Figure 6: Complex Series/Parallel System Example Reliability Block Diagram.

Table 4: Data for Complex Series/Parallel System Example
Node Data p̃ ν

0
1
2

11
12 242.87/244.66 244.66

111 1.55/1.58 1.58
112 1.55/1.58 1.58
121 80/80 470.13/471.90 471.90
122 39/40 14232.34/14234.12 14234.12

1111 30/30 191.17/191.79 191.79
1112 90/90 14232.34/14234.12 14234.12
1121 10/10 191.17/191.79 191.79
1122 29/30 14232.34/14234.12 14234.12

21
22 242.87/244.66 244.66

211 1.55/1.58 1.58
212 1.55/1.58 1.58
221 80/80 470.13/471.90 471.90
222 39/40 14232.34/14234.12 14234.12

2111 30/30 191.17/191.79 191.79
2112 90/90 14232.34/14234.12 14234.12
2121 10/10 191.17/191.79 191.79
2122 29/30 14232.34/14234.12 14234.12
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Figure 7: Plot of Complex Series/Parallel System Example Reliability Posteriors.

algorithm (GA) (Goldberg (1989), Michalewicz (1992)) to do the optimization.

Thus, we assume that there is a cost for collecting additional data with higher-level data being more

costly than lower-level data. Consider the following costs as an example of the costs for testing at each node.

Recall that node 0 is the system, nodes 1 and 2 are subsystems and nodes 3-7 are components:

(0: $3), (1: $2), (2: $2), (3: $1), (4: $1), (5: $1), (6: $1), (7: $1).

We evaluate a candidate allocation (i.e., number of tests for each node) using a pre-posterior based

criterion as follows. We take a draw from the current joint posterior (based on the current data) of the node

reliabilities and draw binomial data according to the candidate allocation. Then we combine these new data

with the current data using the same priors to obtain an updated posterior of the node reliabilities. The

length of the 90% central credible interval of the system reliability posterior is taken as the uncertainty. This

is repeated N times, each with a different draw from the current joint posterior of the node reliabilities. The

uncertainty criterion is the 0.90 quantile of the resulting 90% credible interval lengths.

Briefly, we describe how a GA can be used to find a nearly optimal allocation. A GA operates on a

“population” of candidate allocations, where a candidate allocation is a vector of node sample sizes. The

GA begins by constructing an initial population or generation of M allocations by randomly generating

allocations that do not exceed the given fixed budget. The uncertainty criterion for each of these allocations

in the initial population is evaluated and the allocations are ranked from smallest to largest, i.e., the best

allocation has the smallest criterion in the initial population. The second (subsequent) GA generations are

then populated using two genetic operations: crossover and mutation. A crossover is achieved by randomly

selecting two parent allocations from the initial (current) generation without replacement with probabilities

inversely proportional to their rank among the M allocations in the initial (current) generation. A new

allocation is obtained from the two parent allocations node by node by randomly picking one of the two
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parents each time and taking its node sample size. The two parent allocations are then returned to the

initial (current) population before the next crossover is performed. In this way, an additional M allocations

are generated using the crossover operator. The generated allocations are checked to make sure they do not

exceed the budget, so that new allocations are generated until there are M such allocations. The uncertainty

criterion is then evaluated for each of these new allocations. A mutation of each of the initial (current) M

allocations is obtained node by node by first randomly deciding to change the node sample size and if so

then randomly perturbing the current sample size. Using mutation, M additional allocations which stay

within the budget are generated and the uncertainty criterion for each is evaluated. At this point there are

3M allocations. In the next generation, the current population consists of the M best allocations from these

3M allocations, i.e., with the smallest uncertainty criterion. The GA is executed for G generations. We

implemented the GA for resource allocation in R (R Development Core Team (2004)) which generates the

candidate allocations. An allocation is evaluated in R by repeated building YADAS input data files, using

YADAS (through the “system” call) to analyze the new and current data and reading the resulting YADAS

output files to calculate the uncertainty criterion.

In the simplified system of Section 1.1, the length of the 90% credible interval of system reliability based

on the existing data was 0.164. To illustrate the GA for the allocation problem described above, we consider

a fixed budget of $1000. Populations of size M = 20 were used to generate G = 50 generations. Consequently

a total of 2020 (= 20+40×50) allocations are generated and evaluated. The uncertainty criterion is based on

100 draws from joint posterior of reliabilities obtained in Section 1.1. For a budget of $1000, what resource

allocation yields the most reduction in the uncertainty criterion for system reliability? Based on the GA

escribed above, the GA produced the traces presented in Figures 8 and 9 which display the best uncertainty

criterion and allocation found during each generation. The uncertainty criterion starts at 0.085 for the initial

population and decreases to 0.069 in generation 50 with an allocation of (93, 3, 175, 34, 19, 153, 67, 77) for

nodes 0-7. Note that an allocation using the entire budget was not identified because the slight improvement

over that found was within the simulation error of the uncertainty criterion. Note that in the best allocation

very few subsystem 1 tests (node 1) and subsystem 1 component tests (nodes 3 and 4) are required.

5 Discussion

We have illustrated how to respond to the challenge of integrating all information available at the various

levels of a system in order to estimate its reliability. Bayesian models have always been natural for doing this

integration, and the computational tools have now caught up to make this practical. The YADAS modeling

environment has been very useful in creating general code with easily constructed input files for this purpose;

the ReliableSystem package, which fits naturally into the YADAS architecture, does the novel work. The

code is automatic enough that it can be used inside a genetic algorithm written in R whose purpose is to

find near–optimal allocations of resources.
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Figure 8: GA Evolution of Best Uncertainty Criterion.

Figure 9: GA Evolution of Best Resource Allocation.
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We have discussed the case of binomial test data only, but YADAS is also general enough to handle

component and subsystem tests that generate continuous data such as lifetimes, and their distributions can

depend on covariates such as age. See Graves and Hamada (2004). Future work includes generalizing the

system reliability modeling code to handle common cause failures, by including software to calculate minimal

cut sets and using these results to calculate subsystem success probabilities. See Hamada et al. (2004) for

a similar analysis.
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